生物学哲学 philosophy of (Jay Odenbaugh and Paul Griffiths)

首次发表于 2008 年 7 月 4 日;实质性修订于 2020 年 6 月 1 日

过去四十年来,生物学在哲学界的兴趣增长反映了同一时期生物科学的日益重要。现在有大量关于许多不同生物主题的文献,不可能在这篇文章中总结这些工作。相反,这篇文章旨在解释生物学哲学的_本质_。为什么生物学对哲学重要,反之亦然?在文章末尾提供了一份涉及生物学哲学特定主题的百科全书条目列表。

生物学哲学的一般研究可以分为三种不同的哲学探究。首先,在生物学的背景下讨论了科学哲学的一般命题。其次,对生物学本身的概念问题进行了哲学分析。第三,传统哲学问题的讨论中引用了生物学。

生物学哲学还可以根据其所涉及的生命科学领域进行细分。生物学是一组非常多样化的学科,涵盖了从古生物学到生物技术等工程科学的各个领域。每个领域都存在不同的哲学问题。文章的后半部分讨论了哲学家如何处理生物学的一些主要学科。


1. 生物学哲学的前史

正如大多数明显的新颖事物一样,仔细观察揭示了生物学哲学的前史(Grene&Depew 2004)。在 1950 年代,生物学家 J.H.伍德格(J. H. Woodger)和哲学家莫顿·贝克纳(Morton Beckner)都发表了关于生物学哲学的重要著作(Woodger 1952; Beckner 1959),但这些著作并没有引起随后的哲学文献(尽管参见 Ruse 1988)。一些科学哲学家也根据一般认识论和形而上学的考虑对生物学提出了一些主张。其中最著名的例子之一是 J.J.C.斯马特(J. J. C. Smart)声称生物学不是一门自主的科学,而是更基础科学(如“无线电工程学”)的技术应用(Smart 1959, 366)。与工程学一样,生物学无法对自然法则进行任何补充。它只能揭示物理学和化学在特定初始和边界条件下的作用方式(有关生物学定律的最新讨论,请参见 Beatty 1995; Brandon 1997; Mitchell 1997; Sober 1997; Waters 1998)。甚至在 1969 年,动物学家恩斯特·迈尔(Ernst Mayr)也抱怨称,标题中带有“科学哲学”的书都是误导性的,应该改为“物理学哲学”(Mayr 1969)。然而值得注意的是,科学哲学家如卡尔·G·亨普尔(Carl G. Hempel)(1965)和欧内斯特·纳格尔(Ernest Nagel)(1961)提供了生物科学中的功能性解释的解释。著名生物学家如迈尔和 F.J.阿亚拉(Ayala 1976; Mayr 1982)的鼓励是新领域出现的一个因素。另一个因素是一些科学哲学家,包括罗伯特·布兰登(Robert Brandon),菲利普·基彻(Phillip Kitcher),伊丽莎白·劳埃德(Elisabeth Lloyd),萨霍特拉·萨卡尔(Sahotra Sarkar),埃利奥特·索伯(Elliott Sober)和威廉·C·温萨特(William C. Wimsatt)在哈佛大学与史蒂芬·杰·古尔德(Stephen Jay Gould),理查德·勒文汀(Richard Lewontin)和理查德·莱文斯(Richard Levins)等人一起进行研究(Callebaut 1993)。生物学哲学成为科学哲学的主流部分的第一个迹象是大卫·赫尔(David Hull)在著名的普林斯顿大学出版社哲学基础系列中出版的《生物科学哲学》(Hull 1974)。从那时起,该领域迅速发展。罗伯特·布兰登(Robert Brandon)在 20 世纪 70 年代末可以说:“我认识五位生物学哲学家:马乔里·格林(Marjorie Grene),大卫·赫尔(David Hull),迈克尔·鲁斯(Michael Ruse),玛丽·威廉姆斯(Mary Williams)和威廉·温萨特(William Wimsatt)。”(Brandon 1996,xii-xiii)然而,到 1986 年,已经有足够多的人填满迈克尔·鲁斯(Michael Ruse)的新杂志《生物学与哲学》(Biology and Philosophy)的页面。随着《生物学理论》(Biological Theory),《生物学的哲学与实践》(Philosophy and Practice of Biology),《生命科学的历史与哲学》(History and Philosophy of the Life Sciences)以及《生物和生物医学科学的历史与哲学研究》(Studies in History and Philosophy of Biological and Biomedical Sciences)等其他期刊的引入,这一趋势只会增加。

生物学哲学的一般范畴下有三种不同类型的哲学探究。首先,生物学的背景下探讨科学哲学的一般命题。其次,对生物学本身的概念(或理论)问题进行哲学分析。第三,传统哲学问题的讨论中引用生物学。生物学哲学的第一个重要辩论是以遗传学为例,探索科学哲学中还原主义和反还原主义的使用。肯尼斯·F·沙夫纳(Kenneth F. Schaffner)将逻辑实证主义的理论还原模型应用于经典孟德尔遗传学和分子遗传学之间的关系(Schaffner 1967a; Schaffner 1967b; Schaffner 1969)。大卫·赫尔(David Hull)认为,这一尝试的教训是孟德尔遗传学无法还原为分子遗传学(Hull 1974; Hull 1975)。这场辩论加强了 20 世纪 70 年代和 80 年代的共识,即特殊科学与更基础的科学是自治的(Fodor 1974; Kitcher 1984)。然而,生物学分子革命不是科学还原的成功实例这一主张的明显荒谬性也导致了对理论还原的越来越充分的模型的制定(Wimsatt 1976; Wimsatt 1980; Schaffner 1993; Waters 1994; Rosenberg 1997; Sarkar 1998)。

在另一场重要的早期辩论中,哲学家们试图解决生物学本身的概念问题。繁殖适应度的概念是进化理论的核心,但其地位一直存在问题。生物学家们难以避免受到批评,即“如果我们试图以严格意义上的进化定律来制定法则,似乎会陷入自指性。因此,假设我们说即使在仙女座,‘适者生存’,我们什么也没说,因为‘适者’必须以‘生存’为基础来定义”(Smart 1959, 366)。这被称为“自指性问题”。亚历山大·罗森伯格(Alexander Rosenberg)和玛丽·B·威廉姆斯(Mary B. Williams)认为,适应度是一个不可还原的原始概念,其意义来自于进化理论的公理化表述中的位置(Rosenberg 1983; Sober 1984a; Williams and Rosenberg 1985)。如果正确,这将解决自指性问题,因为公理通常被认为是自指的。在 20 世纪 70 年代,新一代的生物学哲学家提出了自指性问题的不同解决方案。首先,他们认为适应度是生物体的一种上位性属性:每个特定生物体的适应度必然依赖于生物体及其特定环境的一些具体的物理特征,但具有相同适应度的两个生物体可能具有非常不同的物理特征集(Rosenberg 1978)。其次,他们认为这种上位性属性是一种_倾向_,即通过概率分布表示的可能后代数量的概率倾向(Mills and Beatty 1979)。尽管适应度是以繁殖成功为基础定义的,但适者生存并不是适应度最高的生物体拥有最多后代的自指性。这就像骰子更容易掷出偶数而不是六一样,并不是自指性。适者生存的倾向和骰子均等地落在每一面的倾向都使我们能够对将发生的事情进行有限的预测,随着样本大小的增加,预测变得更加可靠。然而,目前尚不清楚是否可能指定一个概率分布或一组分布,能够扮演种群生物学中适应度实际扮演的所有角色(Beatty & Finsen 1989, Sober 2001; Pence & Ramsey 2013)。

“概念问题”这个词应该被广泛理解。生物哲学家所做的概念工作在许多情况下与理论生物学融为一体。它有时也会引导哲学家审查和批评生物学家构建的论证链条,从而直接参与进行中的生物学辩论。同样地,我们所描述的生物学哲学的第一种形式——使用生物学例子来处理科学哲学中的一般问题——有时会通过具体的改进生物学方法的建议而反馈到生物学本身。生物学哲学文献中一个引人注目的特点是哲学家经常在生物学期刊上发表文章,而生物学家经常为生物学哲学期刊做出贡献。生物学哲学还有一个潜在重要的角色,作为生物学和社会之间的调解者。关于生物学的普遍发现和理论工作,大众对生物学的表述得出广泛的教训。科学哲学家在评估这些对特定生物学发现意义的解释方面具有明显的作用(Stotz 和 Griffiths 2008)。作为两个重要的例子,生物学哲学家在创造论/智能设计(Kitcher 1982; Ruse 1982; Pennock 2000; Sarkar 2007)和社会生物学/进化心理学(Kitcher 1985; Buller 2006; Richardson 2010; Barker 2015)方面提供了很多清晰的观点。

第三种生物学哲学形式出现在哲学家诉诸生物学来支持传统哲学主题的立场,例如伦理学或认识论。关于生物学目的论的广泛文献就是一个例子。在“现代综合”之后,对目的论语言的特定进化解释引入了“目的性”一词(Pittendrigh 1958),功能和目标导向性的概念被进化生物学家视为相对不成问题。然而,在 20 世纪 70 年代,哲学家开始寻求生物学为规范概念(如疾病、紊乱或功能障碍)提供坚实的科学基础(Wimsatt 1972; Wright 1973; Boorse 1976)。最终,哲学辩论产生了一种与现代综合观点基本相似的目的性语言分析(Millikan 1984; Neander 1991; Godfrey-Smith 1994)。根据“选择效应”功能理论,一个特征的功能是该特征因其被选择而进行的活动。“适当功能”的概念已成为哲学工具箱的一部分,特别是在语言哲学和心灵哲学中(Dretske 1991, 1997; Millikan 1995, 2004, 2005; Papineau 1987, 1993; Neander 2017; Garson 2019)。

3. 进化生物学哲学

生物学哲学也可以根据其所关注的生物学特定领域进行细分。直到最近,进化生物学吸引了哲学关注的绝大部分。这项工作有时旨在支持哲学科学的一般论点,例如“语义观”或基于模型的理论观点(Beatty 1980; Lloyd 1988; Thompson 1988)。但是,这项工作大部分关注的是理论本身内部出现的概念问题,而且这项工作通常与纯粹的哲学科学一样类似于理论生物学。例如,埃利奥特·索伯(Elliott Sober)的经典研究《选择的本质:哲学聚焦下的进化理论》(Sober 1984b)标志着许多哲学家意识到生物学哲学的时刻。索伯通过将种群遗传学的结构与牛顿力学和力的组合进行类比,将随时间发生的基因频率的实际变化视为多种不同的“力”(如选择、随机遗传漂变、突变和迁移)的结果进行了分析。一些生物学哲学家对这种进化理论解释提出了质疑,主张采用“统计”方法(Sterelny&Kitcher 1988; Matthen 和 Ariew 2002; Walsh,Lewens 和 Ariew 2002),这场辩论仍在继续。进化理论中的另一个概念问题是随机遗传漂变的性质。选择和漂变如何区分(Beatty 1987)?我们通常认为漂变发生在基因频率的随机波动时,但在不断变化的环境中,选择也可以产生完全相同的模式。因此,一些生物学哲学家认为我们必须将选择和漂变区分为过程,而不仅仅是模式。一种方法是通过区分无差别和有差别的抽样过程来实现这一点(Millstein 2002; Brandon 2005; Millstein 2005)。问题变成了感兴趣的特征在基因频率变化中是否具有因果关系。对种群遗传学进行仔细的方法论分析的这些例子,即传统进化理论的数学核心,继续产生有趣的结果(Pigliucci 和 Kaplan 2006; Plutynski 2006; Okasha 2007; Sarkar 2011)。

20 世纪 80 年代对进化理论的哲学兴趣的强烈程度可以部分地通过两个争议来解释(Segerstråle 2000)。首先,有一个关于“社会生物学”的争议,这是由 E.O.威尔逊的同名教科书(Wilson 1975)和他赢得普利策奖的畅销书(Wilson 1978)的出版引起的。对这种将进化生物学应用于人类社会行为的批评中,史蒂芬·杰伊·古尔德和理查德·勒文汀(Gould and Lewontin 1979)提出了一项非常重要的批评。关于适应主义的争论最终涉及了一系列关于进化是否产生适应性、最优性模型的作用以及进化理论方法论的担忧(Amundson 1994; Orzack and Sober 1994; Brandon and Rausher 1996; Godfrey-Smith 2001; Millstein 2007; Forber 2009; Potochnik 2009; Lloyd 2015)。哲学工作有助于区分这些辩论中的不同观点,并减少了在激烈而辩论性的生物学文献中关于适应主义的争论中出现的混乱(Orzack and Sober 2001)。其次,乔治·威廉姆斯的《适应与自然选择》(Williams 1966)和理查德·道金斯的《自私的基因》(Dawkins 1976)的出现。他们声称,选择的单位是个体的孟德尔等位基因,而不是有机体、一群有机体或物种。这引发了关于“选择单位”的早期哲学研究的爆发(Brandon and Burian 1984)。早期的争论涉及是否存在确定的选择单位以及在特定情况下应该使用什么标准来确定选择单位(Hull 1980; Wimsatt 1980a, 1980b; Brandon 1982; Sober & Lewontin 1984; Lloyd 1988; Sterelny & Kitcher 1988)。随着多层次选择模型和 Price 方程的出现,人们开始密切关注如何解释这些模型(Godfrey-Smith & Lewontin 1993; Godfrey-Smith & Kerr 2002; Lloyd 2005; Waters 2005; Okasha 2006; Birch 2017)。例如,对于任何群体选择模型,是否存在一个在经验上等效的个体选择模型(类似于基因型和基因模型)?如果存在,它们是否代表完全相同的因果结构?亲缘选择是群体选择的一种形式吗?可以说,哲学家在 20 世纪 90 年代对进化生物学中某些形式的“群体选择”进行了重要贡献,这是在两个被忽视或鄙视的十年之后(Sober and Wilson 1998)。

生物分类学的哲学讨论是对 20 世纪 60 年代和 70 年代该学科的“科学革命”的回应。这场革命使该学科从表型学和进化分类学转变为应用数量方法。继任者是威利·亨尼希(1966 年)提出的“支序”方法,该方法认为分类学的唯一目标应该是代表“自然”的有机体群。支序学家认为自然群是单系群(单系群包括一个祖先物种和其所有后代物种)。因此,支序方法只代表了系统发生学,即共同祖先的模式。哲学家大卫·L·赫尔(David L. Hull)是这两场革命中的积极参与者;事实上,他曾在 1984 年至 1985 年担任系统动物学学会主席,在 1985 年至 1986 年担任科学哲学协会主席(Hull 1965;Hull 1970;Hull 1988;Sober 1988)。此外,关于系统发生推断的性质的概念性工作也大量出现。系统发生学常用系统发生树来表示系统发生。发现系统发生面临着理论与证据的不确定性问题。例如,如果我们有四个分类单元,就会有 15 棵可能的根树。然而,只有其中一棵树对应实际的历史谱系。此外,给定分类单元的系统发生不能直接观察,因此必须进行推断。因此,系统发生推断的问题是如何证明这样的历史假设。最初选择的系统发生方法是最简原则,即选择提出最少进化事件的树。一些系统发生学家使用卡尔·波普尔(Karl Popper)的证伪主义来支持这种方法(Wiley 1975,Farris 1983)。在 20 世纪 70 年代,约瑟夫·费尔森斯坦(Joseph Felsenstein)证明了具有特定拓扑结构的谱系在最简分析中存在系统误差(Felsenstein 1978,2004)。这就是“长枝吸引”问题,即长枝末端的分类单元被最简分析错误地归为一组,而不是与它们共享更近的共同祖先的分类单元(Haber 2008)。费尔森斯坦提出使用统计技术(特别是最大似然方法)来避免这个问题。这两派之间的争论仍在继续(Sober 2004)。

当生物学家迈克尔·吉塞林(Michael Ghiselin)提出系统分类学在生物物种的本体论地位上基本上是错误的时,他引起了哲学家的兴趣(Ghiselin 1974)。物种不像化学元素那样是自然种类。相反,它们是历史上的个别存在,就像国家或星系一样。它们通过物种形成开始,通过生物关系随时间整合,通过灭绝终止存在(Mishler&Brandon 1987)。此外,个体生物不是物种的实例,就像结婚戒指是金的实例一样。相反,它们是物种的一部分,就像一个人是家庭的一部分一样。正如斯马特(Smart)早先注意到的那样,这意味着关于生物物种本身的“自然法则”至少在传统意义上是不存在的(Smart 1959)。大卫·赫尔进一步发展并辩护了“物种作为个体”的论点。他探讨了这一论点对物种名称、自然法则和人性等各种主题的影响(Hull 1976,1978,1986)。

然而,物种是个体的观点留下了关于物种的其他重要问题未解决,并引发了自身的新问题(Kitcher 1984, 1989)。例如,假设你是一位种群生物学家,你需要对一种物种的个体进行普查。你如何决定要计数的实体是什么?哲学家和生物学家提供了各种标准来回答这类问题,包括繁殖、生命周期、遗传学、性别、发育瓶颈、生殖细胞与体细胞的分离、监管机制、空间边界或连续性、免疫反应、适应度最大化、合作和/或冲突、共同分散、适应性、代谢自主性和功能整合(Clarke 2013)。因此,生物个体是什么的问题确实是一个紧迫的问题(Wilson 2005;Okasha 2006;Clarke 2011;Pradeu 2012;Bouchard and Huneman 2013;Clarke 2013;Godfrey-Smith 2013;Wilson and Barker 2013)。

生物学家对物种范畴一直存在着严重分歧(Ereshefsky 1992b;Wheeler and Meier 2000;Coyne and Orr 2004;Wilkins 2009)。以恩斯特·迈尔(Ernst Mayr)著名的生物物种概念(BSC)为例。他写道:“物种是由互交配的自然种群组成的,这些种群与其他这样的群体在繁殖上是隔离的”(Mayr 1963, 89)。对于 BSC 存在许多问题(Ehrlich and Raven 1969;Sokal and Crovello 1970;Van Valen 1976;Wiley 1978)。无性生物不进行交配。因此,在 BSC 上,没有无性生物的物种。许多物种表现出一定程度的内渗,因此不能被视为不同的物种。最后,BSC 在应用于化石记录中的物种时极为困难,因为性器官通常不会化石化,而且繁殖行为很难得到证实。鉴于 BSC 存在的问题(以及其他原因),生物学家提出了其他物种概念。物种多元论是指没有单一正确的物种概念可以完全相同地对生物进行分类(Ereshefsky 1992a);相反,存在着几个正确的物种概念。也就是说,对于某些生物来说,不同的物种概念将正确地将它们归为不同的物种。物种唯一论是指存在一个单一正确的物种概念。有人声称物种多元论是暂时的,因为我们最终会找到最佳的概念(Hull 1999)。多元论者和唯一论者之间的辩论仍在继续(Wilson 1999)。

生物物种通常被视为“自然种类”的经典例子之一。系统分类学的哲学对分类和自然种类的最新研究产生了重大影响(Dupré 1993, 2002;Wilson et. al. 1997;Boyd 1999;Griffiths 1999;Wilson 1999;Okasha 2001;Walsh 2006)。例如,是否可以有与生物学中的“种群思维”一致的自然种类或本质主义概念(Mayr 1975,Sober 1980;Ariew 2008)?

5. 分子生物学的哲学

我们上面提到,将孟德尔遗传学归纳为分子遗传学是生物学哲学中首次讨论的主题之一。Schaffner 和 Hull 之间的最初辩论之后,出现了所谓的“反约简共识”(Kitcher 1984)。约简主义立场在 Kenneth Waters 的一系列重要论文(1990 年,1994 年)中得到复兴,关于这两个学科之间的认知关系的辩论至今仍在继续。然而,现在的问题不再是简单地在约简和不可约简之间做出选择(Griffiths 1999; Kitcher 1999; Sober 1999)。相反,引入和讨论了多重实现、实现和机制等各种概念(Wilson 2005,Craver 2007; Polger & Shapiro 2016)。这些概念在思考遗传学以及神经科学和细胞生物学等更广泛领域时都非常重要。例如,Lindley Darden、Schaffner 和其他人认为分子生物学的解释并不仅仅局限于一个本体层次,因此从十九世纪物理学中的现象学气体定律约简到分子运动学的经典例子中得出的“约简”概念根本不适用(Darden and Maull 1977; Schaffner 1993)。此外,分子生物学没有像物理科学中那样基于一套定律或一套数学模型的宏大理论。相反,已经在一个模式生物体中详细揭示的高度特异性机制似乎充当“典范”,允许研究在其他使用相同或相关分子相互作用物的生物体中类似但不一定相同的机制。Darden 和其他人认为这些“机制”——特定实体集合及其独特活动——是科学发现和科学解释的基本单位,不仅适用于分子生物学,还适用于广泛的特殊科学领域(Machamer, Darden et al. 2000; Craver & Darden 2013; 另见 Bechtel and Richardson 1993)。关于机制的概念是否适用于生物学的其他领域存在一个有趣的问题(Skipper & Millstein 2005; Havstad 2011)。

分子生物学哲学中的另一个重要主题是基因的概念(Beurton, Falk and Rheinberger 2000; Waters 2000, 2004; Griffiths and Stotz 2007)。哲学家们还广泛地探讨了遗传信息的概念,文献的总体趋势是,很难准确地重构这个概念,以使其能够充分体现分子生物学家对其的重视(Sarkar 1996; Maynard Smith 2000; Godfrey-Smith 2001; Griffiths 2001; Jablonka 2002; Rosenberg 2006)。例如,DNA 是否实际携带_语义_信息(Shea 2007)?如果不是,这是一个有用的虚构,还是阻碍了分子生物学的发展(Levy 2001)?

6. 发展生物学的哲学

20 世纪 80 年代关于适应主义的争论使哲学家们熟悉了进化生物学中特征解释与发育生物学中同一特征解释之间的复杂相互作用。发育生物学揭示了可能为选择提供的变异类型,提出了一个问题:进化的结果在多大程度上可以通过“发育限制”(即可选择的选项)而不是这些选项的自然选择来理解(Maynard Smith,Burian 等,1985)。关于发育限制的争论仅从发展生物学是否能够回答进化问题的角度来看待发展生物学。然而,正如 Ron Amundson 所指出的,发展生物学家正在探讨他们自己的问题,并且他认为需要一个不同的约束概念来解决这些问题(Amundson,1994)。20 世纪 90 年代出现了一个新的领域,承诺将这两种解释统一起来,即进化发育生物学,这引发了大量的哲学文献,旨在从方法论的角度描述这一领域(Gray,1992; Griffiths 和 Gray,1994; Oyama,2000a,2000b; Oyama,Griffiths 和 Gray,2001; Maienschein 和 Laubichler,2004; Robert,2004; Amundson,2005; Brandon 和 Sansom,2007)。例如,发展系统理论家(Gray,1992; Griffiths 和 Gray,1994; Oyama,2000a,2000b; Oyama,Griffiths 和 Gray,2001)主张基因和非遗传因素之间的“平等”。首先,有机体继承的是“发育基质”,而不仅仅是基因(例如“表观遗传”)。其次,基因在特征发展中的作用并不是因果唯一的——就像基因“携带信息”或“复制”一样,其他因素也可以这样说。也就是说,基因和发育因素与表型特征因果相关。然而,“扩展复制体”的支持者认为基因在语义学意义上独特地携带信息(Sterelny 等,1996)。发展生物学中另一个哲学争议的来源是关于任何特征是否是先天的以及先天性可能是什么(Ariew,1999; Griffiths,2002; Mameli 和 Bateson,2006)。哲学家们为澄清相关概念做出了贡献。

7. 生态学和保育生物学的哲学

直到最近,生物学哲学领域一直是一个极度欠发展的领域。这令人惊讶,因为上述三种生物学哲学方法都有明显的潜力。在环境伦理学中也有大量的哲学研究工作,回答那里出现的问题需要对生态学和保护生物学进行批判性的研究(Brennan 2014)。在过去的二十年里,这个领域发展迅速(Colyvan et. al. 2009)。

哲学家们已经开始弥补对生态学的忽视,出现了一些重要的著作(Cooper 2003,Ginzburg and Colyvan 2004,Sarkar 2005,MacLaurin and Sterelny 2008)。讨论的重点集中在几个主题上,包括数学模型与生态学经验数据之间复杂而有时困扰的关系(Shrader-Frechette & McCoy 1993;Ginzburg and Colyvan 2004;Odenbaugh 2005;Weisberg 2012),是否存在独特的生态学定律(Cooper 2003;Mikkelson 2003;Lange 2005;Eliot 2011b,Linquist et. al. 2016),生态社区和生态系统的本质和现实性(Sterelny 2006;Odenbaugh 2007;Eliot 2011),生态学原理的“稳健性”(Odenbaugh 2003;Weisberg & Reisman 2008;Justus 2012),生态稳定性和“自然平衡”的概念(Odenbaugh 2001;Cooper 2003;Mikkelson 2001;Justus 2008),生物多样性的定义(Sarkar 2005;MacLaurin and Sterelny 2008;Santana 2014),以及生态学与保护生物学之间的关系(Linquist 2008)。最近,在生态学中也进行了有关功能的有趣研究(Jax, 2005;Odenbaugh 2010;Nunes-Neto et. al. 2014;Dussault & Bouchard 2017)。大多数生态学家和进化生物学家认为生态社区或生态系统不是选择的单位,因此功能的选择效应解释并不容易适用。因此,生态学哲学家一直在探索替代方案。

8. 生物学哲学中的方法论和未来发展方向

生物学哲学的大部分工作都是自觉自然主义的,承认哲学和科学在方法和内容上没有深刻的断裂。理想情况下,生物学哲学与生物学本身的区别不在于其知识基础,而仅在于它所提出的问题。哲学家的目标是以专业水平参与生物学的内容,尽管通常对其历史的了解比生物学家本身更多,但实际操作技能较少。生物学哲学家通常在他们研究的领域拥有学术资历,并与科学合作者密切合作。生物学哲学的自然主义以及其与科学本身的关注的连续性与近期哲学科学研究中的许多其他工作共享,尤其是在神经科学哲学中(Bechtel,Mandik 等,2001)。

甚至生物学问题和生物学哲学问题之间的区别也不是绝对清晰的。如上所述,生物学哲学家涉及三种类型的问题:关于科学本质的一般问题,生物学内部的概念问题,以及似乎可以从生物科学中得到启示的传统哲学问题。在回答第二类问题时,哲学生物学和理论生物学之间没有明确的区别。但是,虽然这可能导致指责生物学哲学家放弃了他们的职责而变成了“科学报道”,但同样可以说,《自私的基因》(Dawkins 1976)这样的书主要是对生物学的哲学讨论的贡献。当然,哲学家的专业技能对于这些内部概念难题与其他两类问题一样重要。这三种类型的问题只能通过复杂的论证链与生物科学的具体发现相关联。

生物学哲学领域正在进行大量的新工作。例如,围绕癌症(Plutynski 2018)、文化进化(Sterelny 2012;Lewens 2015;O'Connor 2019)、人类本性(Machery 2008;Ramsey 2013;Kronfeldner 2018)、微生物学(O'Malley 2014)和古生物学(Turner 2011;Currie 2018)出现了丰富的哲学文献。生物学哲学仍然是哲学科学和哲学更一般领域中最具活力和有趣的领域之一。

Bibliography

Recent textbooks include Elliott Sober’s Philosophy of Biology (Sober 1999), Kim Sterelny and Paul Griffiths’s Sex and Death: An Introduction to Philosophy of Biology (1999), Marjorie Greene and David Depew’s The Philosophy of Biology: An Episodic History (2004), Brian Gavey’s Philosophy of Biology (2007), Alexander Rosenberg and Daniel McShea’s Philosophy of Biology: A contemporary introduction (2008), and Peter Godfrey-Smith’s Philosophy of Biology (2014).Valuable edited collections designed to supplement such a text are Elliott Sober’s Conceptual Issues in Evolutionary Biology (Sober 2006) which collects the classic papers on core debates, David Hull and Michael Ruse’s The Philosophy of Biology which aims at a comprehensive survey using recent papers (1998), and the Cambridge Companion to the Philosophy of Biology (Hull and Ruse 2007), The Handbook of Philosophy of Biology (Matthen and Stephens 2007), and Blackwell Companion to the Philosophy of Biology (Sarkar and Plutynski 2008) which all consist of essays on key topics by leading authors.

  • Amundson, R., 1994. “Two concepts of constraint: adaptationism and the challenge from developmental biology,” Philosophy of Science, 61(4): 556–578.

  • –––, 2005. The changing rule of the embryo in evolutionary biology: Structure and synthesis, New York: Cambridge University Press.

  • Ariew, A., 1999. “Innateness is Canalization”, in V. Hardcastle (ed.) Where Biology Meets Psychology, Cambridge, MA: MIT Press.

  • Ayala, F. J., 1976. “Biology as an autonomous science,” in M. Grene, and E. Mendelsohn (eds.): Boston Studies in Philosophy of Science XXVII (Topics in Philosophy of Biology), 313–329.

  • Barker, G., 2015. Beyond Biofatalism: Human Nature for an Evolving World, New York: Columbia University Press.

  • Beatty, J., 1980. “Optimality-design and the strategy of model-building in evolutionary biology,” Philosophy of Science, 47: 532–61.

  • Beatty, J., & Finsen, S., 1989. “Rethinking the propensity interpretation: A peek inside Pandora’s box,” In What the Philosophy of Biology is, Dordrecht: Springer, 17–30.

  • Beatty, J., 1995. “The Evolutionary Contingency Thesis,” in G. Wolters and J. Lennox (eds.), Concepts, Theories, and Rationality in the Biological Sciences, University of Pittsburgh Press.

  • Bechtel, W., Mandik, P. et al. (eds.), 2001. Philosophy and the Neurosciences: A Reader, Oxford: Blackwell.

  • Bechtel, W., and Richardson, R., 1993. Discovering Complexity, Princeton: Princeton University Press.

  • Beckner, M., 1959. The biological way of thought, New York: Columbia University Press.

  • Beurton, P., Falk, R., and Rheinberger, H.-J. (eds.), 2000. The Concept of the Gene in Development and Evolution, Cambridge: Cambridge University Press.

  • Birch, J., 2017. The Philosophy of Social Evolution, Oxford University Press.

  • Boorse, C., 1976. “Wright on functions,” Philosophical Review, 85(1): 70–86.

  • Boyd, R., 1999. “Homeostasis, species, and higher taxa,” in Species: New interdisciplinary essays, edited by R. Wilson, Cambridge, MA: Bradford/MIT Press.

  • Brandon, R. N. (ed.), 1996. Concepts and Methods in Evolutionary Biology, Cambridge: Cambridge University Press.

  • –––, 1997. “Does biology have laws? The experimental evidence”, PSA 1996 (Volume 2), 444–457.

  • –––, 2005. “The Difference between Selection and Drift: A Reply to Millstein,” Biology & Philosophy, 20(1): 153–170.

  • Brandon, R. N. and Burian, R. M. (eds.), 1984. Genes, Organisms, and Populations, Cambridge, MA: MIT Press.

  • Brandon, R., and M. D. Rausher, 1996. “Testing adaptationism: A comment on Orzack and Sober,” The American Naturalist, 148: 189–201.

  • Brandon, R. N. and Sansom, R. (eds.), 2007. Integrating Evolution and Development, Cambridge: Cambridge University Press.

  • Brennan, A., 2014. Thinking about Nature (Routledge Revivals): An Investigation of Nature, Value and Ecology, London: Routledge.

  • Buller, D. J., 2006. Adapting Minds: Evolutionary Psychology and the Persistent Quest for Human Nature, Cambridge, MA: MIT press.

  • Callebaut, W., 1993. Taking the Naturalistic Turn, or How Real Philosophy of Science is Done, Chicago: University of Chicago Press.

  • Colyvan, M., Linquist, S., Grey, W., Griffiths, P. E., Odenbaugh, J., & Possingham, H. P., 2009. “Philosophical Issues in Ecology: Recent Trends and Future Directions,” Ecology and Society, 14(2): 22; online publication.

  • Cooper, G., 2003. The Science of the Struggle for Existence: On the foundations of ecology, Cambridge: Cambridge University Press.

  • Coyne, J. A. and Orr, H. A., 2004. Speciation, Sunderland, MA: Sinauer Associates, Inc.

  • Craver, C. F., 2007. Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience, Oxford: Oxford University Press.

  • Craver, C. F., & Darden, L., 2013. In Search of Mechanisms: Discoveries Across the Life Sciences, Chicago: University of Chicago Press.

  • Currie, A., 2018. Rock, bone, and ruin: An optimist’s guide to the historical sciences, Cambridge, MA: MIT Press.

  • Darden, L. and Maull, N., 1977. “Interfield theories,” Philosophy of Science, 44(1): 43–64.

  • Dawkins, R., 1976. The Selfish Gene, Oxford: Oxford University Press.

  • Dretske, F., 1991. Explaining Behavior: Reasons in a World of Causes, Cambridge, MA: MIT Press.

  • –––, 1997. Naturalizing the Mind, Cambridge, MA: MIT Press.

  • Dupré, J. (ed.), 1987. The Latest on the Best: Essays on Optimality and Evolution, Cambridge, MA: MIT Press.

  • –––, 1993. The Disorder of Things: Metaphysical Foundations of the Disunity of Science, Cambridge, MA: Harvard University Press.

  • –––, 2002. “Is ‘Natural Kind’ a Natural Kind Term?“ Monist, 85(1): 29–49.

  • Dussault, A. C. and F. Bouchard, 2017. {special-character:ldquo]A persistence enhancing propensity account of ecological function to explain ecosystem evolution,” Synthese, 194(4): 1115–1145.

  • Ehrlich, P. and Raven, P., 1969. “Differentiation of Populations,” Science, 165(3899): 1228–1232.

  • Eliot, C., 2011a. “The Legend of Order and Chaos: Communities and Early Community Ecology,” in Handbook of the Philosophy of Ecology, K. de Laplante, B. Brown, and K. Peacocke (eds.), Haarlem: Elsevier, 49–108.

  • Eliot, C., 2011b. “Competition Theory and Channeling Explanation,” Philosophy and Theory in Biology, 3: 1–16.

  • Ereshefsky, M., 1992a. “Eliminative pluralism,” Philosophy of Science, 59(4): 671–690.

  • –––, 1992b. The Units of Evolution: Essays on the Nature of Species, Cambridge, MA: MIT Press.

  • Fodor, J. A., 1974. “Special sciences. ” Synthese, 28: 77–115.

  • Forber, P., 2009. “Spandrels and a Pervasive Problem of Evidence,” Biology and Philosophy, 24: 247–266.

  • Garson, J., 2019. What Biological Functions Are and Why They Matter, Cambridge: Cambridge University Press.

  • Garvey, B., 2007. Philosophy of Biology, Stocksfield: Acumen.

  • Ghiselin, M. T., 1974. “A radical solution to the species problem,” Systematic Zoology, 23: 536–44.

  • Ginzburg, L., and Colyvan, M., 2004. Ecological Orbits: How planets Move and Populations Grow, Oxford and New York: Oxford University Press.

  • Godfrey-Smith, P., 2001a. “Three kinds of adaptationism,” in Adaptationism and Optimality, S. H. Orzack, and E. Sober (eds.), New York: Cambridge University Press, pp. 335–357.

  • –––, 2001b. “On the Theoretical Role of ‘Genetic Coding’” Philosophy of Science, 67: 26–44.

  • Godfrey-Smith, Peter & R.C. Lewontin, 1993. “The Dimensions of Selection,” Philosophy of Science, 60(3): 373–395.

  • Godfrey-Smith, Peter & Benjamin Kerr, 2002. “Group Fitness and Multi-Level Selection: Replies to Commentaries,” Biology and Philosophy, 17(4): 539–549.

  • Gould, S. J., and R. C. Lewontin, 1979. “The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme“, Proceedings of the Royal Society London, Series B, 205: 581–598.

  • Gray, R., 1992. “Death of the Gene: Developmental Systems Strike Back” in P. Griffiths (ed.), Trees of Life: Essays in the Philosophy of Biology, Dordrecht: Kluwer.

  • Grene, Marjorie G., and David Depew, 2004. The Philosophy of Biology: An Episodic History, Cambridge: Cambridge University Press.

  • Griffiths, Paul E., 1999. “Squaring the circle: Natural kinds with historical essences,” in Species, New interdisciplinary essays, edited by R. A. Wilson, Cambridge, MA: Bradford/MIT Press:209–228.

  • Griffiths, P. E., 2001. “Genetic Information: A Metaphor in Search of a Theory,” Philosophy of Science, 68(3): 394–412.

  • Griffiths, P., 2002. “What is Innateness?,” Monist, 85: 70–85.

  • Griffiths, P. and R. Gray, 1994. “Developmental Systems and Evolutionary Explanation” Journal of Philosophy, 91: 277–304.

  • Griffiths, P. E. and Stotz, K., 2007. “Gene,” in M. Ruse and D. Hull, (eds.): Cambridge Companion to Philosophy of Biology, Cambridge: Cambridge University Press, 85–102.

  • Haber, M.H., 2008. “Phylogenetic Inference,” in A. Tucker (ed.), A Companion to Philosophy of History and Historiography, Malden, MA: Blackwell Publishing.

  • Havstad, J. C., 2011. “Problems for natural selection as a mechanism,” Philosophy of Science, 78(3): 512–523.

  • Hempel, Carl, 1965. Aspects of Scientific Explanation and Other Essays in the Philosophy of Science, New York: The Free Press.

  • Hennig, W., 1966. Phylogenetic Systematics, Urbana, IL: University of Illinois Press.

  • Hull, D. L., 1965. “The Effects of Essentialism on Taxonomy: 2,000 Years of Stasis,” British Journal for the Philosophy of Science, 15: 314–326 and 16: 1–18.

  • –––, 1970. “Contemporary systematic philosophies,” Annual Review of Ecology and Systematics, 1: 19–54.

  • –––, 1974. Philosophy of Biological Science, Englewood Cliffs: Prentice-Hall.

  • –––, 1975. “Informal Aspects of Theory Reduction,” in Cohen, R. S. and Michalos, A. (eds.): Proceedings of the Biennial Meeting of the Philosopy of Science Association, 1974, Dordrecht: D. Reidel, 653–670.

  • –––, 1976. “Are species really individuals?” Systematic zoology, 25(2): 174–191.

  • –––, 1978. “A matter of individuality.“ Philosophy of science, 45(3): 335–360.

  • –––, 1980. “Individuality and Selection,” Annual Review of Ecology and Systematics, 11: 311–332.

  • –––, 1986. “On human nature,” In PSA 1986 (Volume 2), Proceedings of the biennial meeting of the philosophy of science association, Philosophy of Science Association, pp. 3–13.

  • –––, 1988. Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science, Chicago: University of Chicago Press.

  • –––, 1999. “On the plurality of species: questioning the party line,” in Species: New Interdisciplinary Essays, Cambridge, MA: MIT Press, pp. 307–315.

  • Hull, D. L. and Ruse, M. (eds.), 1998. The Philosophy of Biology, Oxford: Oxford University Press.

  • Hull, D. L. and Ruse, M., 2007. The Cambridge Companion to the Philosophy of Biology, New York, Cambridge University Press.

  • Jablonka, E., 2002. “Information Interpretation, Inheritance, and Sharing,” Philosophy of Science, 69(4): 578–605.

  • Jax, K., 2005. “Function and ‘functioning’ in ecology: what does it mean?” Oikos, 111(3): 641–648.

  • Justus, J., 2008. “Ecological and Lyapunov stability,” Philosophy of Science, 75: 421–436.

  • –––, 2012. “The elusive basis of inferential robustness.“ Philosophy of Science, 79(5): 795–807.

  • Kitcher, P., 1982. Abusing science: The case against creationism, Cambridge, MA: MIT Press.

  • –––, 1984. “1953 and all that: a tale of two sciences,” Philosophical Review, 93: 335–373.

  • –––, 1984. “Species,” Philosophy of Science, 51(2): 308–333.

  • –––, 1985. Vaulting Ambition: Sociobiology and the Question for Human Nature, Cambridge, MA: MIT Press.

  • –––, 1989. “Some puzzles about species,” in Michael Ruse (ed.), What the Philosophy of Biology Is: Essays Dedicated to David Hull, Dordrecht: Kluwer Academic Publishers, pp. 183–208.

  • –––, 1999. “The hegemony of molecular biology,” Biology and Philosophy, 14(2): 195–210.

  • Kronfeldner, M., 2018. What’s left of human nature?: A post-essentialist, pluralist, and interactive account of a contested concept, Cambridge, MA: MIT Press.

  • Levy, A., 2011. “Information in biology: A fictionalist account,” Noûs, 45(4): 640–657.

  • Lewens, T., 2015. Cultural evolution: conceptual challenges, Oxford: Oxford University Press.

  • Linquist, S., 2008. “But is it progress? On the alleged advances of conservation biology over ecology,” Biology and Philosophy, 23: 529–544.

  • Linquist, S., Gregory, T. R., Elliott, T. A., Saylor, B., Kremer, S. C., & Cottenie, K., 2016. “Yes! There are resilient generalizations (or ‘laws’) in ecology,” The Quarterly Review of Biology, 91(2): 119–131.

  • Lloyd, E. A., 1988. The Structure and Confirmation of Evolutionary Theory, Westport: Greenwood Press.

  • –––, 2005. “Why the Gene Will Not Return,” Philosophy of Science, 72(2): 287–310.

  • –––, 2015. “Adaptationism and the logic of research questions: how to think clearly about evolutionary causes.“ Biological Theory, 10(4): 343–362.

  • Machamer, P., Darden, L. et al., 2000. “Thinking about Mechanisms,” Philosophy of Science, 67(1): 1–25.

  • Machery, E., 2008. “A plea for human nature,” Philosophical Psychology, 21(3): 321–329.

  • MacLaurin, J. and Sterelny, K., 2008. What is Biodiversity? Chicago: University of Chicago Press.

  • Maienschein, J. and Laubichler, M. L., 2004. From Embryology to Evo-Devo, Cambridge: Cambridge University Press.

  • Mameli, M. and Bateson, P., 2006. “Innateness and the Sciences,” Biology and Philosophy, 21: 155–188.

  • Matthen, M., & Ariew, A., 2002. “Two ways of thinking about fitness and natural selection,” The Journal of Philosophy, 99(2): 55–83.

  • Maynard Smith, J., 2000. “The concept of information in biology,” Philosophy of Science, 67(2): 177–194.

  • Maynard Smith, J., Burian, R. et al., 1985. “Developmental Constraints and Evolution,” Quarterly Review of Biology, 60(3): 265–287.

  • Mayr, E., 1963. Animal species and evolution, Cambridge, MA: Harvard University Press.

  • –––, 1969. “Footnotes on the Philosophy of Biology,” Philosophy of Science, 36(2): 197–202.

  • –––, 1982. The Growth of Biological Thought, Cambridge, MA: Harvard University Press.

  • Millikan, R. G., 1984. Language, Thought and Other Biological Categories, Cambridge, MA: MIT Press.

  • –––, 1995. White queen psychology and other essays for Alice, Cambridge, MA: MIT Press.

  • –––, 2004. Varieties of meaning: the 2002 Jean Nicod lectures, Cambridge, MA: MIT Press.

  • –––, 2005. Language: A biological model, Oxford: Oxford University Press.

  • Mills, S. and Beatty, J., 1979. “The propensity interpretation of fitness,” Philosophy of Science, 46: 263–286.

  • Millstein, Roberta L., 2002. “Are Random Drift and Natural Selection Conceptually Distinct?” Biology & Philosophy, 17(1): 33–53.

  • –––, 2005. “Selection Vs. Drift: A Response to Brandon’s Reply,” Biology & Philosophy, 20(1): 171–175.

  • –––, 2007. “Distinguishing drift and selection empirically: ‘The Great Snail Debate’ of the 1950s,” Journal of the History of Biology, 41: 339–367.

  • Mishler, B. D., & Brandon, R. N., 1987. “Individuality, pluralism, and the phylogenetic species concept,” Biology and Philosophy, 2(4): 397–414.

  • Mitchell, S. D., 1997. “Pragmatic laws,” Philosophy of Science, 64: S468–S479.

  • –––, 2000. “Dimensions of scientific laws,” Philosophy of Science, 67: 242–265.

  • Nagel, Ernest, 1961. The Structure of Science: Problems in the Logic of Scientific Explanation, New York: Harcourt, Brace & World.

  • Neander, K., 1991. “Functions as selected effects: the conceptual analyst’s defense,” Philosophy of Science, 58: 168–184.

  • –––, 2017. A mark of the mental: In defense of informational teleosemantics, Cambridge, MA: MIT Press.

  • Nunes-Neto, N., A. Moreno, and C. N. El-Hani, 2014. “Function in ecology: an organizational approach,” Biology & Philosophy, 29(1): 123–141.

  • O’Connor, C., 2019. The Origins of Unfairness: Social Categories and Cultural Evolution, Oxford: Oxford University Press.

  • O’Malley, M., 2014. Philosophy of microbiology, Cambridge: Cambridge University Press.

  • Odenbaugh, J., 2001. “Ecology, stability, model building and environmental policy: a reply to some of the pessimism,” Philosophy of Science, 68: S493–S505.

  • –––, 2003. “Complex systems, trade-offs, and theoretical population biology: Richard Levin’s ‘strategy of model building in population biology’ revisited,” Philosophy of Science, 70(5): 1496–1507.

  • –––, 2005. “Idealized, inaccurate but successful: A pragmatic approach to evaluating models in theoretical ecology,” Biology and Philosophy, 20(2-3): 231–255.

  • –––, 2007. “Seeing the forest and the trees,” Philosophy of Science, 74: 628–641.

  • –––, 2010. “On the very idea of an ecosystem,” in New waves in metaphysics, A. Hazlett (ed.), London: Palgrave, pp. 240–258.

  • Okasha, S., 2002. “Darwinian metaphysics: Species and the question of essentialism,” Synthese, 131(2): 191–213.

  • –––, 2007. Evolution and the Levels of Selection, New York and Oxford: Oxford University Press.

  • Orzack, S. H., and E. Sober, 1994. “Optimality models and the test of adaptationism,” The American Naturalist, 143: 361–380.

  • –––, 2001. Optimality and Adaptation, Cambridge: Cambridge University Press.

  • Oyama, S., 2000. The Ontogeny of Information, 2nd Edition, Duke University Press.

  • –––, 2000. Evolution’s Eye, Duke University Press.

  • Oyama, S., P. Griffiths and R. Gray (eds.), 2001. Cycles of Contingency, Cambridge, MA: MIT Press.

  • Papineau, David, 1987. Reality and Representation, Blackwell.

  • –––, 1993. Philosophical naturalism, Blackwell.

  • Pence, C. H., & Ramsey, G., 2013. “A new foundation for the propensity interpretation of fitness,” The British Journal for the Philosophy of Science, 64(4): 851–881.

  • Pigliucci, M. and Kaplan, J. M., 2006. Making Sense of Evolution: The Conceptual Foundations of Evolutionary Theory, Chicago: University of Chicago Press.

  • Pittendrigh, C. S., 1958. “Adaptation, natural selection and behavior,” Behavior and Evolution, in A. Roe and G. G. Simpson (eds.), New Haven: Yale University Press, 390–416.

  • Plutynski, A., 2018. Explaining cancer: Finding order in disorder, Oxford: Oxford University Press.

  • Polger, T. W., & Shapiro, L. A., 2016. The multiple realization book, Oxford: Oxford University Press.

  • Potochnik, A., 2009. “Optimality modeling in a suboptimal world,” Biology and Philosophy, 24: 183–197.

  • Ramsey, G., 2013. “Human nature in a post-essentialist world,” Philosophy of Science, 80(5): 983–993. Chicago

  • Richardson, R. C., 2010. Evolutionary psychology as maladapted psychology, Cambridge, MA: MIT Press.

  • Robert, J. S., 2004. Embryology, Epigenesis and Evolution: Taking Development Seriously, Cambridge and New York: Cambridge University Press.

  • Rosenberg, A., 1978. “The supervenience of biological concepts,” Philosophy of Science, 45: 368–386.

  • –––, 1983. “Fitness,” Journal of Philosophy, 80: 457–473.

  • –––, 1997. “Reductionism redux: computing the embryo,” Biology and Philosophy, 12(4): 445”470.

  • –––, 2008. Darwinian reductionism: Or, how to stop worrying and love molecular biology, Chicago: University of Chicago Press.

  • Rosenberg, A. and McShea, D. W., 2008. Philosophy of Biology: A contemporary introduction, New York and London: Routledge.

  • Ruse, M., 1982. Darwinism Defended, Addison-Wesley.

  • –––, 1988. Philosophy of biology today, SUNY Press.

  • Santana, C.,, 2014. “Save the planet: Eliminate biodiversity,” Biology & Philosophy, 29(6): 761–780.

  • Sarkar, S., 1992. “Models of reduction and categories of reductionism,” Synthese, 91: 167–94.

  • –––, 1996. “Biological information: A sceptical look at some central dogmas of molecular biology,” in Sarkar, S. (ed.), The Philosophy and History of Molecular Biology: New Perspectives (Boston Studies in the Philosophy of Science 183), Dordrecht and Boston: Kluwer Academic, 187–232.

  • –––, 1998. Genetics and Reductionism, Cambridge: Cambridge University Press.

  • –––, 2005. Biodiversity and Environmental Philosophy: An Introduction, Cambridge: Cambridge University Press.

  • –––, 2007. Doubting Darwin?: Creationist designs on evolution, Malden, MA: Blackwell Publishing.

  • –––, 2011. “Drift and the Causes of Evolution,” in P. McKay Illari, F. Russo and J. Williamson (eds.) Causality in the Sciences, Oxford: Oxford University Press, 445–469.

  • Sarkar, S. and Plutynski, A., 2008. A Companion to the Philosophy of Biology, Oxford: Blackwell.

  • Schaffner, K. F., 1967a. Antireductionism and Molecular Biology, in Munson, R. (ed.) Man and Nature: Philosophical Issues in Biology, New York: Dell, 44–54.

  • –––, 1967b. “Approaches to Reduction,” Philosophy of Science, 34: 137–47.

  • –––, 1969. “The Watson-Crick model and reductionism,” British Journal for the Philosophy of Science, 20: 325–48.

  • –––, 1993. Discovery and Explanation in Biology and Medicine, Chicago and London: University of Chicago Press.

  • Segerstråle, U. C. O., 2000. Defenders of the truth: The battle for science in the sociology debate and beyond, Oxford: Oxford University Press.

  • Shea, N., 2007. “Representation in the genome and in other inheritance systems”, Biology and Philosophy, 22(3): 313–331.

  • Shrader-Frechette, K. S. and McCoy, E. D., 1993. Method in Ecology: Strategies for Conservation, Cambridge and New York: Cambridge University Press.

  • Skipper Jr, R. A., & Millstein, R. L., 2005. “Thinking about evolutionary mechanisms: Natural selection,” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2): 327–347.

  • Smart, J. J. C., 1959. “Can biology be an exact science?” Synthese, 11(4): 359–368.

  • Sober, E., 1984a. “Fact, fiction and fitness: a reply to Rosenberg,” Journal of Philosophy, 81: 372–383.

  • –––, 1984b. The Nature of Selection: Evolutionary Theory in Philosophical Focus, Cambridge, MA: MIT Press.

  • –––, 1988. Reconstructing the Past: Parsimony, Evolution and Inference, Cambridge, MA: MIT Press.

  • –––, 1997. “Two Outbreaks of Lawlessness in Recent Philosophy of Science,” Philosophy of Science 2: 458–467.

  • –––, 1999. Philosophy of Biology, Boulder and Oxford: Westview Press.

  • –––, 2001. “The Two Faces of Fitness,” in R. Singh, D. Paul, C. Krimbas, and J. Beatty (eds.), Thinking about Evolution: Historical, Philosophical, and Political Perspectives (Volume 2), Cambridge: Cambridge University Press, pp. 309–321.

  • –––, 2004. “The Contest between Parsimony and Likelihood,” Systematic Biology, 53: 644–53.

  • Sober, E., (ed.), 2006. Conceptual Issues in Evolutionary Biology, Cambridge, MA: MIT Press.

  • Sober, E. and Wilson, D. S., 1998. Unto Others: The Evolution and Psychology of Unselfish Behavior, Cambridge, MA: Harvard University Press.

  • Sokal, R. R. and T. J. Crovello, 1970. “The biological species concept: a critical evaluation,” The American Naturalist, 104 (936): 127–153.

  • Sterelny, K., 2006. “Local ecological communities,” Philosophy of Science, 73: 215–231.

  • –––, 2012. The evolved apprentice, MIT Press.

  • Sterelny, K. and Griffiths, P. E., 1999. Sex and Death: An Introduction to the Philosophy of Biology, Chicago: University of Chicago Press.

  • Sterelny, K., K. Smith, and M. Dickison, 1996. “The extended replicator,” Biology and Philosophy, 11: 377–403.

  • Sterelny, K., & Kitcher, P., 1988. “The return of the gene,” The Journal of Philosophy, 85(7): 339–361.

  • Stotz, K. and Griffiths, P. E., 2008. “Biohumanities: Rethinking the relationship between biosciences, philosophy and history of science, and society,” Quarterly Review of Biology, 83(1): 37–45.

  • Thompson, P., 1988. The structure of biological theories, Albany, NY: SUNY Press.

  • Turner, D., 2011. Paleontology: a philosophical introduction, Cambridge: Cambridge University Press.

  • Van Valen, L., 1976. “Ecological species, multispecies, and oaks,” Taxon, 25(2–3): 233–239.

  • Walsh, Denis, 2006. “Evolutionary Essentialism,” British Journal for the Philosophy of Science, 57(2): 425–448.

  • Walsh, D. M., Lewens, T., & Ariew, A., 2002. “The trials of life: Natural selection and random drift,” Philosophy of Science, 69(3): 429–446.

  • Waters, C. K., 1990. Why the Antireductionist Consensus Won’t Survive the Case of Classical Mendelian Genetics, in A. Fine, M. Forbes and L. Wessells (eds.), Proceedings of the Biennial Meeting of the Philosophy of Science Association (Volume 1: Contributed Papers), Chicago: University of Chicago Press, 125–139.

  • –––, 1994. “Genes made molecular,” Philosophy of Science, 61: 163–185.

  • –––, 1998. “Causal Regularities in the Biological World of Contingent Distributions,” Biology and Philosophy, 13: 5–36.

  • –––, 2000. “Molecules made biological,” Revue internationale de philosophie, 54(214/4): 539–564.

  • –––, 2004. “What was classical genetics?,” Studies in History and Philosophy of Science (Part A), 35(4): 783–809.

  • –––, 2005. “Why Genic and Multilevel Selection Theories Are Here to Stay,” Philosophy of Science, 72(2): 311–333.

  • Weisberg, M., 2012. Simulation and similarity: Using models to understand the world, Oxford: Oxford University Press.

  • Weisberg, M., & Reisman, K., 2008. “The robust Volterra principle,” Philosophy of science, 75(1): 106–131.

  • Wiley, E. O., 1978. “The evolutionary species concept reconsidered,” Systematic Biology, 27(1): 17–26.

  • Wilkins, J. S., 2009. Species: a history of the idea, Volume 1, Berkeley: University of California Press.

  • Williams, George C., 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought, Princeton, NJ: Princeton University Press.

  • Williams, M. B. and Rosenberg, A., 1985. “‘Fitness’ in fact and fiction: a rejoinder to Sober,” Journal of Philosophy, 82: 738–749.

  • Wilson, E. O., 1975. Sociobiology: The New Synthesis, Cambridge, MA: Harvard University Press.

  • –––, 1978. On Human Nature, Cambridge, MA: Harvard University Press.

  • Wilson, R. A., 2005. Genes and the agents of life: the individual in the fragile sciences biology, Cambridge: Cambridge University Press.

  • Wilson, R. A. (ed.), 1999. Species: New Interdisciplinary Essays, Cambridge, MA: MIT Press.

  • Wilson, R. A., Barker, M. J., & Brigandt, I., 2007. ‘When traditional essentialism fails: biological natural kinds.’ Philosophical Topics, 35(1/2): 189–215.

  • Wimsatt, W. C., 1972. “Teleology and the Logical Structure of Function Statements,” Studies in History and Philosophy of Science, 3: 1–80.

  • –––, 1976. “Reductive Explanation: A Functional Account,” in R.S. Cohen, C.A. Hooker, A.C. Michalos, J.W. Van Evra (eds.), PSA 1974 (Boston Studies in the Philosophy of Science: Volume 32), Dordrecht: Springer, 617–710.

  • –––, 1980a. Reductionistic Research Strategies and Their Biases in the Units of Selection Controversy, in T. Nickles (ed.), Scientific Discovery: Case Studies, Dordrecht: D. Reidel, 213–259.

  • –––, 1980b. “Units of Selection and the Structure of the Multi-Level Genome,” PSA 1980 (Volume 2), Chicago: University of Chicago Press, 122–183.

  • Woodger, J. H., 1952. Biology and Language: An Introduction to the Methodology of the Biological Sciences including Medicine, Cambridge: Cambridge University Press.

  • Wright, L., 1973. “Functions,” Philosophical Review, 82: 139–168.

Academic Tools

Other Internet Resources

adaptationism | altruism: biological | biocomplexity | biological development: theories of | biological individuals | biology: philosophy of | character-trait | conservation biology | creationism | Darwinism | developmental biology | developmental biology: evolution and development | ecology | ecology: biodiversity | evolution | evolution: concept before Darwin | evolution: cultural | evolution: from the Origin of Species to the Descent of Man | fitness | gene | genetics | genetics: ecological | genetics: genotype/phenotype distinction | genetics: molecular | genetics: population | heritability | human genome project | immunology, philosophy of | information: biological | innate/acquired distinction | life | molecular biology | natural selection | natural selection: units and levels of | neuroscience, philosophy of | psychology: evolutionary | reduction, scientific: in biology | replication and reproduction | sociobiology | species | teleology: teleological notions in biology

Acknowledgments

The SEP Editors would like to thank Sally Ferguson for her editorial work on earlier versions of this entry.

Copyright © 2020 by Jay Odenbaugh <jay@lclark.edu> Paul Griffiths

最后更新于

Logo

道长哲学研讨会 2024